Question		on	Answer	Marks	Guidance
1	(a)		$Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O \checkmark$	1	ALLOW multiples IGNORE state symbols (even if wrong)
	(b)		Increasing size: Atomic radius increases OR more shells OR more (electron) shielding ✓	3	 FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED IGNORE more orbitals OR more sub-shells Alternative must refer to shells ALLOW Energy levels for shells ALLOW more electron repulsion between shells IGNORE just 'shielding' (more/greater needed) IGNORE 'nuclear shielding'
			Attraction Nuclear attraction decreases OR (outer) electron(s) experience less attraction ✓ <i>Ionisation energy</i> lonisation energy decreases OR less energy needed to remove electron(s) ✓		IGNORE 'pull' for attraction IGNORE 'electrons less tightly held' IGNORE 'nuclear charge' for 'nuclear attraction' IGNORE 'easier to remove electron' <i>Energy is required</i> ALLOW less energy to oxidise

Qı	Question		Answer	Marks	Guidance
	(c)	(i)	Disproportionation: oxidation and reduction of the same element ✓ <i>Redox</i> : C <i>l</i> is oxidised from +5 (in KC <i>l</i> O ₃) to +7 (in KC <i>l</i> O ₄) ✓ C <i>l</i> is reduced from +5 (in KC <i>l</i> O ₃) to –1 (in KC <i>l</i>) ✓	3	ALLOW 'chlorine' OR 'C <i>l</i> ' for same element IGNORE 'species' for 'element' ALLOW after number, e.g. 5+ IGNORE ionic charges, e.g. C <i>l</i> ⁵⁺ IGNORE '5' (signs required)
					 IGNORE any reference to electron loss/gain (even if wrong) ALLOW one redox mark if oxidation numbers are correct but reduction/oxidation is incorrectly assigned
		(ii)	potassium chlorate(VII) ✓	1	Brackets required
	(d)	(i)	Equation Ba(NO ₃) ₂ (aq) + Na ₂ SO ₄ (aq) → BaSO ₄ (s) + 2NaNO ₃ (aq) ✓ Entropy change and explanation entropy decreases OR entropy change negative AND (BaSO ₄) solid/ppt has less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random particles/dispersal of energy ✓	2	ALLOW multiples M2 is dependent on BaSO ₄ (s) (even if formula is incorrect – eg Ba(SO ₄) ₂ (s)) seen as a product in the attempted equation as long as reactants are not solid. BaSO ₄ solid/ppt may be assumed from BaSO ₄ (s) seen in the attempted equation.

Question	Answer	Marks	Guidance
(ii)	Equation $1/_2 I_2(s) \rightarrow I(g) \checkmark$ state symbols required Entropy change and explanation entropy increases OR entropy change positive AND gas has more disorder/ less order/ more ways of arranging energy/ more freedom/ more random	2	DO NOT ALLOW $I_2(s) \rightarrow 2I(g)$ DEPENDENT on $\frac{1}{2}I_2(s) \rightarrow I(g)$ OR $I_2(s) \rightarrow 2I(g)$
	particles / more dispersal of energy ✓		
	Total	12	

Question		on	Answer	Marks	Guidance
2	(a)		 ASSUME trend is down the group (unless stated otherwise) Forces London forces increase OR induced dipole(–dipole) interactions increase ✓ 	3	FULL ANNOTATIONS MUST BE USED ALLOW reverse argument throughout IGNORE van der Waals'/vdW forces DO NOT ALLOW hydrogen bonds OR permanent dipole(- dipole) interactions for first and third marking points
			Reason (Number of) electrons increases ✓		ALLOW more (electron) shells
			Link to energy and particles More energy to break intermolecular forces OR to break London forces OR to break induced dipole(–dipole) interactions ✓		DO NOT ALLOW covalent bonds break

Question	Answer	Marks	Guidance
(C)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF $M = 183$ AND Formula = Cl ₂ O ₇ award 4 marks IF $M = 183$ award 3 marks	4	If there is an alternative answer, check to see if there is any ECF credit possible using working below
	Use of data and unit conversions • (R = 8.314) • T in K: 373K • V in m ³ : 76.0 × 10 ⁻⁶ • (p in Pa: 1.00×10^{5}) \checkmark Calculation of n		
	$n = \frac{(1.00 \times 10^5) \times (76.0 \times 10^{-6})}{8.314 \times 373}$ n = 2.45 × 10 ⁻³ (mol) \checkmark		Correct value of n subsumes first mark
	Molar mass $M = \frac{m}{n} = \frac{0.4485}{2.45 \times 10^{-3}} = 183 \text{ (g mol}^{-1}) \checkmark$		ALLOW ECF from incorrectly calculated n
	Molecular formula		ALLOW ECF from incorrect M if formula of Cl_xO_y is the closest to the with calculated value of M
	Cl₂O ₇ ✓		IGNORE use of 24 000 cm ³ for calculation of n BUT then Mark molar mass and Molecular formula by ECF for two marks maximum. $n = \frac{76.0}{24000} = 3.17 \times 10^{-3} \text{ (mol)}$ $M = \frac{0.4485}{3.17 \times 10^{-3}} = 141.6/141.5 \text{ (g mol}^{-1}) \checkmark$ Molecular formula = Cl ₃ O ₂ \checkmark

Quest	ion	Answer	Marks	Guidance
(d)	(i)	Titres correct and ALL recorded to 2 decimal placesTitre: 24.0023.4023.7523.85 ✓	2	
		mean titre = 23.80 (cm ³) \checkmark		ALLOW 23.8 cm ³
(d)	(ii)	Percentage uncertainty = $\frac{0.05 \times 2}{23.40} \times 100 = 0.43 (\%) \checkmark$	1	 ALLOW ECF from incorrect subtraction in (i) or incorrect mean ALLOW 0.42% from titre values 2, 3 or 4 or mean titre or trial titre. 2 DP required
(d)	(iii)	Add starch (near the end point) ✓ Blue to colourless ✓	2	ALLOW blue/black OR black OR purple for colour of mixture ALLOW blue colour disappears (to colourless) IGNORE 'clear' IGNORE 'colorimetry'

Q	Question		Answer	Marks	Guidance
	(d)	(iv)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF B = RbIO ₃ AND relative formula mass = 260.5 award 5 marks IF relative formula mass = 260.5 award 4 marks	5	
			$n(S_2O_3^{2-}) \text{ in titration} = \frac{0.150 \times 23.80}{1000} = 3.57 \times 10^{-3} \text{ (mol) } \checkmark$		ALLOW ECF from incorrect mean titre in (a)(i)
			<i>n</i> (IO ₃ ⁻) in titration = $\frac{3.57 \times 10^{-3}}{6}$ = 5.95 × 10 ⁻⁴ (mol) ✓		ECF from $n(S_2O_3^{2^-})$ in titration ALLOW a two-step calculation $n(I_2) = n(S_2O_3^{2^-}) \div 2$ and $n(IO_3^-) = n(I_2) \div 3$
			<i>n</i> (IO ₃ [−]) in original 250 cm ³ = $10 \times 5.95 \times 10^{-4} = 5.95 \times 10^{-3}$ (mol) ✓		ECF from $n(IO_3^{-})$ in titration
			Relative formula mass of B = $\frac{1.55}{5.95 \times 10^{-3}}$ = 260.5 (g mol ⁻¹) ✓		ECF from $n(IO_3^-)$ in original 250 cm ³ IF scaling × 10 is omitted, ALLOW ECF from $n(IO_3^-)$ in titration
			Formula of B (must be derived from relative formula mass) lodate of Group 1 metal that most closely matches calculated molar mass of B Formula from 260.5 = RbIO ₃ ✓		 ALLOW ECF from incorrect RFM of B provided metal is from Group 1 ALLOW RbIO₃⁻ DO NOT ALLOW RbIO₃ without relative formula mass value. DO NOT ALLOW 260.4 (without working) and RbIO₃ IF B = RbIO₃ AND relative formula mass = 261 award 5 marks
			Total	20	

Question	Answer	Marks	AO element	Guidance
3	C	1	AO1.2	
4	В	1	AO2.6	

Q	Question		Answer	Marks	AO element	Guidance
5	(a)		Interpretation of Results Orange contains bromine AND no reaction AND violet contains iodine ✓	5	2.3× 1	Results can be interpreted anywhere in answer.
			Ionic equation Br ₂ + 2I ⁻ \rightarrow 2Br ⁻ + I ₂ \checkmark		2.6×1	ALLOW multiples, e.g. $\frac{1}{2}Br_2 + I^- \rightarrow Br^- + \frac{1}{2}I_2$ IGNORE other halogen/halide equations IGNORE state symbols
			Reactivity (down the group) Reactivity decreases AND oxidising power decreases OR gains electrons less easily OR forms negative ion/1– ion less easily OR less energy released when electron gained ✓ OR more negative electron affinity Size/shells/shielding (down the group) Greater atomic radius OR more shells OR more shielding ✓ Attraction (down the group) Less nuclear attraction down the group ✓		1.1×3	ALLOW ORA DO NOT ALLOW idea of losing electrons/ionisation energy IGNORE chlorine is the most electronegative IGNORE explanations in terms of displacement

Q	uestion	Answer	Marks	AO element	Guidance
	(b)	Benefit AND risk required for ONE mark Benefit: kills bacteria ✓ AND toxic/poisonous OR forms chlorinated hydrocarbons OR forms carcinogens/toxic compounds ✓	1	1.1	ALLOW kills micro-organisms OR kills pathogens OR kills viruses OR sterilises/disinfects water IGNORE antiseptic, reduces risk of disease, cleans water IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/ dangerous for health/causes breathing problems
	(c)	$n(\mathbf{A}) = \frac{0.209}{29} = 0.00721 \text{ (mol)} \checkmark$ $M_{\rm r} = \frac{1.26}{0.00721} = 174.8 \checkmark$ Molecular formula = BrF ₅ ✓ Formula is dependent on M _r	3	2.2×2 3.2	ALLOW ECF ALLOW 2SF 0.0072 up to calculator value 0.0072068965517 ALLOW 175 up to calculator value 174.8325359 ALLOW F ₅ Br ALLOW ECF that matches calculated Mr
		Tota	I 9		